3.2.28 \(\int \sec ^2(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx\) [128]

3.2.28.1 Optimal result
3.2.28.2 Mathematica [A] (verified)
3.2.28.3 Rubi [A] (verified)
3.2.28.4 Maple [A] (verified)
3.2.28.5 Fricas [A] (verification not implemented)
3.2.28.6 Sympy [F]
3.2.28.7 Maxima [F]
3.2.28.8 Giac [F]
3.2.28.9 Mupad [B] (verification not implemented)

3.2.28.1 Optimal result

Integrand size = 33, antiderivative size = 138 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\frac {8 a^2 (21 A+19 B) \tan (c+d x)}{105 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a (21 A+19 B) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{105 d}+\frac {2 (7 A-2 B) (a+a \sec (c+d x))^{3/2} \tan (c+d x)}{35 d}+\frac {2 B (a+a \sec (c+d x))^{5/2} \tan (c+d x)}{7 a d} \]

output
2/35*(7*A-2*B)*(a+a*sec(d*x+c))^(3/2)*tan(d*x+c)/d+2/7*B*(a+a*sec(d*x+c))^ 
(5/2)*tan(d*x+c)/a/d+8/105*a^2*(21*A+19*B)*tan(d*x+c)/d/(a+a*sec(d*x+c))^( 
1/2)+2/105*a*(21*A+19*B)*(a+a*sec(d*x+c))^(1/2)*tan(d*x+c)/d
 
3.2.28.2 Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.59 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\frac {2 a^2 \left (2 (63 A+52 B)+(63 A+52 B) \sec (c+d x)+3 (7 A+13 B) \sec ^2(c+d x)+15 B \sec ^3(c+d x)\right ) \tan (c+d x)}{105 d \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[Sec[c + d*x]^2*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]),x 
]
 
output
(2*a^2*(2*(63*A + 52*B) + (63*A + 52*B)*Sec[c + d*x] + 3*(7*A + 13*B)*Sec[ 
c + d*x]^2 + 15*B*Sec[c + d*x]^3)*Tan[c + d*x])/(105*d*Sqrt[a*(1 + Sec[c + 
 d*x])])
 
3.2.28.3 Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.06, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {3042, 4498, 27, 3042, 4489, 3042, 4280, 3042, 4279}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) (a \sec (c+d x)+a)^{3/2} (A+B \sec (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 4498

\(\displaystyle \frac {2 \int \frac {1}{2} \sec (c+d x) (\sec (c+d x) a+a)^{3/2} (5 a B+a (7 A-2 B) \sec (c+d x))dx}{7 a}+\frac {2 B \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sec (c+d x) (\sec (c+d x) a+a)^{3/2} (5 a B+a (7 A-2 B) \sec (c+d x))dx}{7 a}+\frac {2 B \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (5 a B+a (7 A-2 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{7 a}+\frac {2 B \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

\(\Big \downarrow \) 4489

\(\displaystyle \frac {\frac {1}{5} a (21 A+19 B) \int \sec (c+d x) (\sec (c+d x) a+a)^{3/2}dx+\frac {2 a (7 A-2 B) \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 B \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} a (21 A+19 B) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}dx+\frac {2 a (7 A-2 B) \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 B \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

\(\Big \downarrow \) 4280

\(\displaystyle \frac {\frac {1}{5} a (21 A+19 B) \left (\frac {4}{3} a \int \sec (c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {2 a \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )+\frac {2 a (7 A-2 B) \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 B \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} a (21 A+19 B) \left (\frac {4}{3} a \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )+\frac {2 a (7 A-2 B) \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 B \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

\(\Big \downarrow \) 4279

\(\displaystyle \frac {\frac {1}{5} a (21 A+19 B) \left (\frac {8 a^2 \tan (c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\right )+\frac {2 a (7 A-2 B) \tan (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d}}{7 a}+\frac {2 B \tan (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 a d}\)

input
Int[Sec[c + d*x]^2*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]),x]
 
output
(2*B*(a + a*Sec[c + d*x])^(5/2)*Tan[c + d*x])/(7*a*d) + ((2*a*(7*A - 2*B)* 
(a + a*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(5*d) + (a*(21*A + 19*B)*((8*a^2* 
Tan[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*Sqrt[a + a*Sec[c + d*x 
]]*Tan[c + d*x])/(3*d)))/5)/(7*a)
 

3.2.28.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4279
Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*b*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]])), x] /; Free 
Q[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4280
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_ 
Symbol] :> Simp[(-b)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m - 1)/(f*m)), x] 
+ Simp[a*((2*m - 1)/m)   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1), x], 
 x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] && Intege 
rQ[2*m]
 

rule 4489
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[(a*B*m + A*b*(m + 1))/(b*(m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B 
, e, f, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b 
*(m + 1), 0] &&  !LtQ[m, -2^(-1)]
 

rule 4498
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]* 
((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))   Int 
[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B) 
*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a 
*B, 0] &&  !LtQ[m, -1]
 
3.2.28.4 Maple [A] (verified)

Time = 4.15 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.79

method result size
default \(\frac {2 a \left (126 A \cos \left (d x +c \right )^{3}+104 B \cos \left (d x +c \right )^{3}+63 A \cos \left (d x +c \right )^{2}+52 B \cos \left (d x +c \right )^{2}+21 A \cos \left (d x +c \right )+39 B \cos \left (d x +c \right )+15 B \right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right ) \sec \left (d x +c \right )^{2}}{105 d \left (\cos \left (d x +c \right )+1\right )}\) \(109\)
parts \(\frac {2 A a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (6 \sin \left (d x +c \right )+3 \tan \left (d x +c \right )+\sec \left (d x +c \right ) \tan \left (d x +c \right )\right )}{5 d \left (\cos \left (d x +c \right )+1\right )}+\frac {2 B a \left (104 \cos \left (d x +c \right )^{3}+52 \cos \left (d x +c \right )^{2}+39 \cos \left (d x +c \right )+15\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right ) \sec \left (d x +c \right )^{2}}{105 d \left (\cos \left (d x +c \right )+1\right )}\) \(134\)

input
int(sec(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x,method=_RETURNV 
ERBOSE)
 
output
2/105*a/d*(126*A*cos(d*x+c)^3+104*B*cos(d*x+c)^3+63*A*cos(d*x+c)^2+52*B*co 
s(d*x+c)^2+21*A*cos(d*x+c)+39*B*cos(d*x+c)+15*B)*(a*(1+sec(d*x+c)))^(1/2)/ 
(cos(d*x+c)+1)*tan(d*x+c)*sec(d*x+c)^2
 
3.2.28.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.78 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\frac {2 \, {\left (2 \, {\left (63 \, A + 52 \, B\right )} a \cos \left (d x + c\right )^{3} + {\left (63 \, A + 52 \, B\right )} a \cos \left (d x + c\right )^{2} + 3 \, {\left (7 \, A + 13 \, B\right )} a \cos \left (d x + c\right ) + 15 \, B a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \]

input
integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorith 
m="fricas")
 
output
2/105*(2*(63*A + 52*B)*a*cos(d*x + c)^3 + (63*A + 52*B)*a*cos(d*x + c)^2 + 
 3*(7*A + 13*B)*a*cos(d*x + c) + 15*B*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x 
 + c))*sin(d*x + c)/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3)
 
3.2.28.6 Sympy [F]

\[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\int \left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \left (A + B \sec {\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}\, dx \]

input
integrate(sec(d*x+c)**2*(a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c)),x)
 
output
Integral((a*(sec(c + d*x) + 1))**(3/2)*(A + B*sec(c + d*x))*sec(c + d*x)** 
2, x)
 
3.2.28.7 Maxima [F]

\[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorith 
m="maxima")
 
output
-4/105*((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) 
^(1/4)*(7*(5*(3*A + 2*B)*a*sin(4*d*x + 4*c) + 2*(12*A + 13*B)*a*sin(2*d*x 
+ 2*c))*cos(7/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - (35*(3* 
A + 2*B)*a*cos(4*d*x + 4*c) + 14*(12*A + 13*B)*a*cos(2*d*x + 2*c) + (63*A 
+ 52*B)*a)*sin(7/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt( 
a) - 105*((A*a*d*cos(2*d*x + 2*c)^4 + A*a*d*sin(2*d*x + 2*c)^4 + 4*A*a*d*c 
os(2*d*x + 2*c)^3 + 6*A*a*d*cos(2*d*x + 2*c)^2 + 4*A*a*d*cos(2*d*x + 2*c) 
+ A*a*d + 2*(A*a*d*cos(2*d*x + 2*c)^2 + 2*A*a*d*cos(2*d*x + 2*c) + A*a*d)* 
sin(2*d*x + 2*c)^2)*integrate((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2 
*cos(2*d*x + 2*c) + 1)^(1/4)*(((cos(8*d*x + 8*c)*cos(2*d*x + 2*c) + 3*cos( 
6*d*x + 6*c)*cos(2*d*x + 2*c) + 3*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos( 
2*d*x + 2*c)^2 + sin(8*d*x + 8*c)*sin(2*d*x + 2*c) + 3*sin(6*d*x + 6*c)*si 
n(2*d*x + 2*c) + 3*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2) 
*cos(7/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + (cos(2*d*x + 2*c)* 
sin(8*d*x + 8*c) + 3*cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 3*cos(2*d*x + 2*c 
)*sin(4*d*x + 4*c) - cos(8*d*x + 8*c)*sin(2*d*x + 2*c) - 3*cos(6*d*x + 6*c 
)*sin(2*d*x + 2*c) - 3*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(7/2*arctan2( 
sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(3/2*arctan2(sin(2*d*x + 2*c), co 
s(2*d*x + 2*c) + 1)) - ((cos(2*d*x + 2*c)*sin(8*d*x + 8*c) + 3*cos(2*d*x + 
 2*c)*sin(6*d*x + 6*c) + 3*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(8*d*...
 
3.2.28.8 Giac [F]

\[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorith 
m="giac")
 
output
sage0*x
 
3.2.28.9 Mupad [B] (verification not implemented)

Time = 19.02 (sec) , antiderivative size = 479, normalized size of antiderivative = 3.47 \[ \int \sec ^2(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=-\frac {\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\left (\frac {a\,\left (7\,A+13\,B\right )\,8{}\mathrm {i}}{105\,d}-\frac {A\,a\,4{}\mathrm {i}}{3\,d}\right )-\frac {a\,\left (3\,A+2\,B\right )\,4{}\mathrm {i}}{3\,d}\right )}{\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}+\frac {\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\left (-\frac {a\,\left (2\,A+3\,B\right )\,8{}\mathrm {i}}{7\,d}+\frac {a\,\left (3\,A+2\,B\right )\,4{}\mathrm {i}}{7\,d}+\frac {A\,a\,4{}\mathrm {i}}{7\,d}\right )-\frac {a\,\left (2\,A+3\,B\right )\,8{}\mathrm {i}}{7\,d}+\frac {a\,\left (3\,A+2\,B\right )\,4{}\mathrm {i}}{7\,d}+\frac {A\,a\,4{}\mathrm {i}}{7\,d}\right )}{\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^3}+\frac {\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\left (-\frac {A\,a\,4{}\mathrm {i}}{5\,d}+\frac {a\,\left (A+2\,B\right )\,12{}\mathrm {i}}{5\,d}+\frac {B\,a\,16{}\mathrm {i}}{35\,d}\right )-\frac {a\,\left (3\,A+2\,B\right )\,4{}\mathrm {i}}{5\,d}+\frac {a\,\left (A+4\,B\right )\,4{}\mathrm {i}}{5\,d}\right )}{\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^2}-\frac {a\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\sqrt {a+\frac {a}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left (63\,A+52\,B\right )\,4{}\mathrm {i}}{105\,d\,\left ({\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+1\right )} \]

input
int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2))/cos(c + d*x)^2,x)
 
output
((a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(exp(c*1i + 
 d*x*1i)*((a*(3*A + 2*B)*4i)/(7*d) - (a*(2*A + 3*B)*8i)/(7*d) + (A*a*4i)/( 
7*d)) - (a*(2*A + 3*B)*8i)/(7*d) + (a*(3*A + 2*B)*4i)/(7*d) + (A*a*4i)/(7* 
d)))/((exp(c*1i + d*x*1i) + 1)*(exp(c*2i + d*x*2i) + 1)^3) - ((a + a/(exp( 
- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(exp(c*1i + d*x*1i)*((a* 
(7*A + 13*B)*8i)/(105*d) - (A*a*4i)/(3*d)) - (a*(3*A + 2*B)*4i)/(3*d)))/(( 
exp(c*1i + d*x*1i) + 1)*(exp(c*2i + d*x*2i) + 1)) + ((a + a/(exp(- c*1i - 
d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(exp(c*1i + d*x*1i)*((a*(A + 2*B) 
*12i)/(5*d) - (A*a*4i)/(5*d) + (B*a*16i)/(35*d)) - (a*(3*A + 2*B)*4i)/(5*d 
) + (a*(A + 4*B)*4i)/(5*d)))/((exp(c*1i + d*x*1i) + 1)*(exp(c*2i + d*x*2i) 
 + 1)^2) - (a*exp(c*1i + d*x*1i)*(a + a/(exp(- c*1i - d*x*1i)/2 + exp(c*1i 
 + d*x*1i)/2))^(1/2)*(63*A + 52*B)*4i)/(105*d*(exp(c*1i + d*x*1i) + 1))